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Adjoining units to residuated Boolean algebras 

P. JIPSEN, B. JONSSON AND J. RAFTER 

Dedicated to the memory o f  Alan Day 

Abstract. We consider a variety ~K of r-algebras, - residuated Boolean algebras, and ask under what 
conditions a member A of "f- can be embedded in a member A' having a unit element. The answer, 
although quite simple, is somewhat surprising for two reasons. First, to a large extent the answer is 
independent of the variety ~ ,  as long as ~K is closed under canonical extensions. This is so because if 
any extension of A has a unit, then the canonical extension has a unit. The second surprise is that, for 
varieties "K closed under canonical extensions, the members for which this extension has a unit form a 
subvariety with a very simple equational basis relatively to ~/~. Applied to the variety of all relation 
algebras, this latter result solves a problem of long standing due to A. Tarski. This problem was solved 
independently by H. Andr6ka and I. N6meti. 

1. Introduction 

A b i n a r y  o p e r a t i o n  o on  a B o o l e a n  a lgeb ra  A o = (A, + ,  0, 1, - )  is said to be  

residuated i f  there  exist  b i n a r y  o p e r a t i o n s  \ and  / on  Ao such  that ,  fo r  all x,  y,  z ~ A, 

x o y <_z iff  y <_x\z iff x <_z/y. 

Equ iva l en t l y ,  o is r e s idua t ed  iff there  exist  b i n a r y  o p e r a t i o n s  [ a n d  <] on  A0 such 

that ,  for  all x,  y, z E A, 

( x o y ) . z = 0  iff (x D z ) - y = 0  iff (z < ] y ) - x = 0 .  

These  ope ra t ions ,  i f  they  exist ,  a re  un ique ,  a n d  they  are  c o n n e c t e d  by the  f o r m u l a s  

x > z = ( x \ z - ) - ,  x \ z  = ( x  ~> z ) , 

z < ~ y = ( z - / y ) - ,  z / y = ( z  < y )  . 
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We refer to \ and / as the right and left residuals of  o, and to D and <] as the right 
and left conjugates of  o. For  technical reasons we prefer to treat ~> and </ as basic 

operations, and we therefore refer to A = (A0, o, [>, <1) as a residuated Boolean 
algebra, or an r-algebra, if D and <1 are respectively, right and left conjugates o f  

o. By a unit for A we mean a unit for the operat ion o, i.e., an element e ~ A with 

e o x = x o e = x  for all x e A .  

I f  e is a unit  for A, then (A0, o, e, E>, 4 )  is said to be a unital residuated Boolean 
algebra, or a ur-algebra. I f  the operat ion o is associative, then A is said to be 

associative. A n  associative ur-algebra is referred to as a residuated Boolean monoid, 
or an rm-algebra. 

This note is concerned with the following question: Which r-algebras can be 

embedded in r-algebras having a unit or, more  briefly, which r-algebras are 

subreducts o f  ur-algebras? Our  main  tool  will be the canonical  extension. A detailed 

discussion of  this concept  can be found e.g. in [2]. Most  o f  the informat ion needed 

here is contained in I IV below. A term or an equat ion that  does not  involve the 

Boolean complementa t ion  is said to be strictly positive and an operat ion on A is 

said to be strictly positive if it is defined by a strictly positive term. The clone o f  all 

strictly positive operat ions on A is called the strictly positive clone of  A. 

I. The canonical  extension of  an r-algebra A = (A0, o, D,  <~) is a complete 

and atomic r-algebra A ~ = (Ag, o, {>, <1) having A as a subalgebra, and if A 

has a unit  e, then e is also a unit for A ~. 

II. The map  F w-~ H F is a bijection f rom the set o f  all ultrafilters F o f  A 0 onto 
the set o f  all a toms of  A~. 

III .  The map  g w-~ g~ is an isomorphism f rom the strictly positive clone o f  A 

onto  the strictly positive clone o f  A ~ In other words, for any strictly 

positive n-ary  term t in the language of  A, t A~ = (t A) ~. Hence, every strictly 

positive identity that  holds in A holds also in A ~. 

IV. I f  t is a strictly positive n-ary  term in the language o f  A, and if S is a 
down-directed subset o f  A n, then 

tA~ S)  = l-I {tA(x) : x S} .  

We remind the reader that  a residuated operat ion on a Boolean algebra 

preserves all joins. In  particular, if the Boolean algebra is complete, then the 
operat ion is completely additive. Consequently,  the operat ions o, E> and <1 on the 
canonical  extension of  an r-algebra are completely additive in each argument.  

Finally, we list some arithmetic properties o f  r-algebras that  will be used later. 
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L E M M A  1.1. Suppose A is an r-algebra and a, b, c ~ A. The fol lowing inclusions 

hold: 

(i) (a/b) o b <_ a, 

(ii) a o (a \b)  <_ b, 

(iii) (ao b).  c _< (a .  (c <~ b))o b, 

(iv) (ao b).  e _< a o ((a E> c).  b). 

Proof. (i) and (ii) follow from the trivial inclusions a/b <_ a/b and a \ b  <_ a \b .  

(iii) and (iv) are special cases of  an observation about  conjugate maps, i.e., maps f 

and g such that  for all x, y ~ A , f ( x )  �9 y = 0 iff x .  g (y )  = 0. The observation is that, 

for all x , y  c A ,  f ( x ) . y  <_f(x . g (y ) ) .  To prove this, let z = f ( x . g ( y ) )  . Then 

f ( x .  g(y) )  . z = O, x .  g ( y )  �9 g(z) = O, x .  g ( y .  z) = 0 (because g is necessarily iso- 

tone), f ( x )  �9 y .  z = 0, and finally f ( x ) .  y <_ z = f ( x .  g(y)) .  To obtain (iii), take 

f ( x )  = x o b  and g ( y ) = y  <~ b, and to obtain (iv) take f ( x ) = a o x  and 

g(y )  = a D y. [] 

2. Adjoining one-sided units 

We begin by considering embeddings of  an r-algebra in an algebra with a 

one-sided unit, say with a right unit. 

T H E O R E M  2.1. Suppose A is an r-algebra. The fol lowing conditions are equiva- 

lent: 

(i) A can be embedded in an r-algebra with a right unit. 

(ii) A ~ has a right unit. 

(iii) For all n E co and x, Yo, Yl . . . . .  y~, ~ A, 

x o  ~I {Yi~yi : i N n }  ~ x. 

P r o o f  Obviously (ii) implies (i), and if A can be embedded in an r-algebra A' 

with a right unit e, then for all y ~ A',  y o e < y ,  whence e _<y~v. F r o m  this (iii) 

follows. Finally, assuming (iii), we want  to show that the element e = 

[ I  {Y~Y :Y ~ A } is a right unit for A ~. F r o m  IV it follows that the inclusion x < 

x o e holds whenever x is the meet of  elements o f  A. By II  this inequality therefore 

holds whenever x is an a tom of  A ~, and using the fact that  the operat ion o is 

completely additive, we infer that  it holds for every x ~ A  ~. By Lemma 1.1(ii), 
x o ( x \ x )  < x,  and hence x o e < x for all x in A. Proceeding as with the opposite 

inclusion, we extend this first to elements o f  A ~ that are meets of  subsets of  A, and 

then to arbitrary elements of  A~. Thus e is a right unit for A ~. 
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3. Adjoining two-sided units 

F r o m  Theorem 2.1 and the corresponding result for left units we obtain an 

infinite equat ional  basis for the variety o f  all r-algebras that  are subreducts o f  

ur-algebras, but  as we shall see, this variety is in fact finitely based. 

L E M M A  3.1. I f  A is an r-algebra satisfying the identities 

x o ( y / y ) ( z / z )  >_x, x o ( y ~ y )  >_x, (1) 

then A ~ has a right unit. 

P r o o f  Letting E = {u ~ A : u >_ u /u} ,  we are going to show that the element 

e = [ I E  is a right unit in A ~ We first note that  

u ~ E  i f f fo r  a l l x ~ A  x o u > x .  (2) 

The forward  implication follows f rom the first formula  in (1), and the backward  

implication is obtained by taking x = u / u ,  using the fact that  by Lemma 1.1(i), 
(u/u) o u < u. Next, we note that 

a \ a  ~ E for all a ~ A. (3) 

Indeed, letting u = a \ a  we have x o u > x for all x ~ A by the second formula  in (1), 

and therefore u ~ E by (2). We now show that  

E is closed under  meets. (4) 

Suppose u, v ~ E. Then u > u/u and v > v/v, and by Lemma 1.1(i), we always have 

uv > (uv/uv) ouv. Therefore,  uv > (uv/uv) o (u/u)(v/v)  >_ uv/uv by the first formula  in 

(1), so that  uv s E .  

The remainder o f  the p r o o f  is essentially as the p r o o f  o f  Theorem 2.1. The set 
E is down-directed,  and x o u > x for all u ~ E and x E A. Hence by IV, x o e > x for 

all x c A .  The opposite inclusion also holds, because x \ x  ~ E  by (3), and 

x o ( x \ x )  <_ x by Lemma 1.1(ii). Thus  x o e = x for all x ~ A. By II  and IV it follows 

that  this equality holds whenever x is an a tom of  A ~, and we conclude by the 
complete additivity o f  o that  it holds for all x ~ A ~. 

T H E O R E M  3.2. For any r-algebra A, the fol lowing conditions are equivalent: 

(i) A is embeddabIe in an r-algebra with a unit. 

(ii) A ~ has a unit. 
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(iii) For all x, y, z ~ A, 

x o ( y / y ) ( z / ~ )  _> x ,  

( y  L v ) ( z \ z )  o x _> x,  

x o ( y L ~ )  -> x,  

( y / y )  o x >__ x.  

Proof. By the preceding lemma, and by right-left symmetry. [] 

C O R O L L A R Y  3.3. I f B  is a subalgebra qf  an r-algebra A, and if  A ~ has a unit, 
then B ~ has a unit. 

C O R O L L A R Y  3.4. I f  B is a finite subalgebra of  an r-algebra with a unit, then 

B has a unit. 

Proof I f  B is finite, then B ~ = B. 

We now consider ur-algebras rather than r-algebras with unit. The significance 

of this is that the language of ur-algebras has a constant denoting the unit element, 
and an equational basis for a variety of  ur-algebras may contain identities that 

involve this constant. 

T H E O R E M  3.5. Suppose ~ is" a variety of  ur-algebras. Let .X  be the class of  all 
r-algebras that are reducts of  members of  sg, and let ~ be the variety generated by 
,3(. Then ~ = $( ~V). I f  ~ is canonical, then ~" is canonical and, Jbr evew r-algebra 

A, 

A ~  r ~ff A~ ~ .~.  

Proof The claim r = 5(.3() is equivalent to the assertion that the class of  all 
r-algebras that are subreducts of  algebras in ~k' is a variety. In fact, for any variety 
~r of  algebras, and for any subtype z of  the type of ;q ~ the class ~ of  all algebras 

of  type r that are subreducts of  algebras in ~//~ is closed under ,~ and P. In the 
present case, ~ = S ( Y )  is also closed under E-l. This follows from the following 
two observations. First, 5(4f ' )  has the congruence extension property (CEP) and 
second, a member A of ~h' and its reduct have the same congruence lattice. To 
clarify the first statement, an algebra A has CEP if every congruence relation on a 
subalgebra of  A can be extended to a congruence relation on A, and a class of  
algebras has CEP if all of its members have CEP. The statement results from the 
fact that :, 4 ,  and ~ are additive and normal (take the value 0 whenever one of 

the arguments is 0). Indeed, if A = (A0 , f ,  i ~ I),  where Ao is a Boolean algebra and 
the operations f are additive and normal, then A has CEP. This follows from the 
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facts that a congruence relation R on A is completely determined by the congruence 
ideal O/R, that a Boolean ideal is a congruence ideal if and only if it is closed under 

the operation f~, and that if J is a congruence ideal of  a subalgebra of  A, then the 
Boolean ideal generated by J is a congruence ideal. The second statement is trivial. 
The only difference between A and its reduct is that in the former the unit is treated 
as a distinguished element, but in the latter it is not. 

Now suppose ~ is canonical. Then ,_,U is obviously closed under canonical 
extensions, and hence so is U.  Furthermore, every member of  .X r has a unit, and 
every member  of  U therefore can be embedded in an r-algebra with a unit. From 

this it follows by Theorem 3.2 that, for every A e ~/f, the member A ~ of ~ has a 
unit, whence A" ~ .~ .  The converse is obvious: I f  the algebra A" is in .3//,, then the 
subalgebra A of A" is in ~//~. 

4. Specification algebras 

Relation algebras, as defined by A. Tarski, are algebras A = (A 0, ~, e, ~) such 
that A 0 = (A, + , 0 , . ,  1 , - )  is a Boolean algebra, (A, o, e) is a monoid, and -, is 

residuated, its right conjugate being a D x = a  ~ o x and its left conjugate 
x <3 a = x o a  ~. More compactly, A is a relation algebra iff the algebra 
(A0, o , e, D,  <]) is an rm-algebra. Over twenty years ago, Tarski conjectured in a 

private conversation with some of  his students that the set of  identities holding in 
all relation algebras and not containing the constant denoting the unit had a finite 

basis. Using the results from the preceding sections, we shall verify this conjecture. 

D E F I N I T I O N  4.1. By a specification algebra we mean an algebra A = (A 0, ~, ~) 

that satisfies all the identities that hold in every relation algebra and do not contain 
the constant denoting the unit. 

The reason for this terminology is that it appears that these algebras are suitable 
for an abstract treatment of  program specifications. 

An axiomatic characterization of specification algebras is easily obtained by 
applying Theorem 3.2 to the r-algebra (Ao, % ~>, <~) with ~ and <~ defined as 
above. The operations \ and / are of  course the left and right residuation, 

a'..b=(a ~*b ) , a / b = ( a - = b  ~)-. 

It will be shown that in this case the four conditions in Theorem 3.2(iii) can be 
replaced by a special case of  the first condition (the case - = ) '  ), provided we also 
postulate some simple properties of  the operation ~, which of course hold in all 
relation algebras, and therefore in all specification algebras. 
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T H E O R E M  4.2. For cmy algebra A = (A~. ' .  ' ) ,  the f o l l owing  comti t imls  are 

equivalent:  

(i) A is a .wec(f ication alL~ehra, 

(ii) A is a suhre th . ' t  <!/" a relation alL, ehra. 

(iii) A ~ is a re(h. ' t  o f  a rekt t imt  algebra. 

(iv) Tke algebra (Ao, ,[?~,,11) with a > h = a " , . h  a m / a  <.] h = a ,, h"  ,/or aft 
a, h ~ A is an r-algebra,  and the.f'ollowi+l~, comgt ions  hok t  j o r  all  a, h, c �9 A. 

(ivy) a (h c ) = ( a  h) c 

( iv . )  (a h ) " = b "  a "  

(iv3) (a + h) '~ = a "  + h "  

( i V 4 )  a . . . .  = ( /  

(ivs) a ( h / b ) ( h - / h  ) >>, a, 

Proo]'i The implications (iii) ~ (ii) ~ (i) ~ (iv) are obvious,  In order  to prove 

that  (iv) implies (iii), we are going to show that if (iv) holds, then the four 

inclusions in Theorem 3.2(iii) are also satisfied. 

By (iv3) and (iv4), the map  '~ is an isotone bijection f rom A to A, and it is 
therefore an au tomorph i sm of  the Boolean algebra A~. In particular,  

( a . b ) ' ~ = a ' ~ . b  '', a .... = a  ..... . (1) 

Using this, we easily see that  

b c = b - " I t  '~, if,/c)'-' = c - l b -  = c " \ b " .  (2) 

E,g,, b ' c = ( b  '~ c - ) -  and b / c = ( h -  c'~) - ,  so that  h ~ J c - ' > = ( b "  c - )  = 

b c,  

Using (1) and (2), we show that  the first inclusion in Theorem 3,2(iii) implies 

the other  three. Thus  we assume that  

a (b ib ) (c l c )  >_a. (3) 

Apply ing  - to both  sides, we obta in  

(b '~ h '9(c  '~ ~ c ' 9  a "  >_ a "  

and hence, replacing a, h, and c by their converses,  

(h b)(c' c )  a 2 a .  (4) 

F rom (3) it follows that  a (b ib)  ~ a and replacing h by h .... we infer by (2) that  

a (b b) _> a. Similarly, (4) implies that  ( b i b ) .  a >_ a. 
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Our  p rob lem has now been reduced to showing that  (3) follows f rom (iv). 

Lett ing u = (h/b)(h f b - )  and v = ( c l c ) ( c - / c - ) ,  we have 

a , u > _ a  and a~ , l ,_>a  (5) 

by (ivs), and it suffices to show that  

a - u v  _> a. (6) 

We begin by showing that  u is an equivalence element,  i.e., that  u ~ u _< u = u 'q By 
L e m m a  1.1 (i), u o b < _ b ,  whence u o u o b < b  by (ivy). Hence  u o u < _ b / b .  By 

symmetry ,  u ~, u <_ b /b - ,  so that  u o u < u. By (2), u = (b/b)(b/b)  ~, whence u '~ = u. 

Similarly, v is an equivalence element, and hence so is uv. 

We next show that  1 o uv = 1. By (5), u _< u o v, whence 

u = (u  o v ) u  = ( u  o u v  + u o u - v ) u .  

But (u o u - v ) u  = 0 ,  because (u~o u ) u - v  <_ u u - v  = 0 ,  and we therefore have u = 
(u o uv)u, or u <_ u ouv. Consequent ly ,  since (5) also implies 1 o u = 1, 

l ouv >_ l o u o u v  >_ l o u =  l. 

T o  comple te  the proof ,  we show that,  for  any  equivalence element w, 1 o w = 1 

implies a o w > a. Using L e m m a  1.1(iii), (ivy), and the fact that  w is an equivalence 
element,  we have 

a = a . ( l o w ) < ( ( a  ~ w ) .  l) o w = a o w o w < a o w .  

Tak ing  w = uv, we obta in  (6), and  the p r o o f  is complete.  [] 

This  solves Tarsk i ' s  problem,  According to M a d d u x  [4], Tarski  had  considered 
the fo rmula  (3) in the above  proof ,  and also the fo rmula  x o ( y / y )>_  x,  and he 

believed tha t  he had  at one t ime shown tha t  one o f  them (he was not  sure which 
one) character izes what  is here called specification algebras.  

A relat ion algebra can be reconstructed f rom the associated rm-algebra by using 
the fact that  a ~ = a  D e. Consequent ly ,  the var iety of  all relation algebras is 
definitionally equivalent  to a variety of  rm-algebras .  In fact, by [3], Theorem 5.3, 
the var iety of  all relat ion algebras is definitionally equivalent  to the variety o f  all 
ur -a lgebras  that  satisfy the equivalent  identities a ~ ( b o c ) = ( a  D b) o c and 
a o ( b  <~ c) = ( a o b )  <1 c. 
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5. A eounterexample 

In view of  Theorem 3.2, one might expect that  the infinite set o f  inclusions in 

Theorem 2.1 could be replaced by a finite set. I t  will be shown below that  this is not  

the case. In other words, we are going to show that, for any positive integer n, there 

exists an r-algebra satisfying the inclusion 

xo H { y ~ y ~ : i < n } > - x  (1.)  

that  cannot  be embedded in an r-algebra with a right unit. The following lemma 

will be used. 

L E M M A  5.1. For any r-algebra A, the following conditions are equivalent. 

(i) For all x ~ A ,  i f  x 4 0 ,  then x ~ x = l. 

(ii) For all x, y c A ,  i f  y 4 0 ,  then x < x o y. 

Proof  Assume (i). Then for all non-zero elements x, y c A, (x E> x) �9 y ~ 0, or 

equivalently, (x o y ) .  x ~ 0. Letting z = x .  (x o y) , we infer that  

(z o y ) .  z _< (x o y ) .  (x o y) - = 0, hence z = 0, or  equivalently, x _< x o y. 

Conversely, assume that  (ii) holds. Then, for any non-zero elements x, y E A, 

x .  (x o y) 4 0 ,  or equivalently, (x D x) �9 y 4 0 .  

Since (x E> x ) . ( x  ~> x ) -  --0, it follows that  (x E> x ) -  = 0, and hence x E> x = 1. 
[] 

T H E O R E M  5.2. The variety of  all r-algebras that can be embedded in r-algebras 

with a right unit is not finitely based. 

Proof  We are going to construct  a sequence o f  r-algebras A m such that  each of  

the conditions (1,)  holds in Am for sufficiently large m, but  each of  the algebras A m 

violates (1,)  for sufficiently large n. These algebras will be finite; in fact, the set X 
of  all a toms in Am will be o f  order ( 2 m )  2 - -  2 m. To complete the definition o f  Am, it 

suffices to describe the way one o f  the three operations o, D,  <3 acts on the atoms. 
We are going to consider the operat ion D. Choose  a subset U of  X of  order 2 m, let 

V be the set o f  all non-diagonal  elements o f  U x U, and noting that  V and X have 

the same order, fix a bijection q~ f rom V onto  X. For  p, q ~ X, define 

p ~> q =  (p ,q)  

i f p  = q 

if (p, q) ~ V 

otherwise. 
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The algebra A m satisfies the condition (i) in Lemma 5.1, and therefore also the 

condition (ii). It follows that (1,) fails in Am iff there exist elements ai E Am, for 

i < n, such that the meet of  the elements a~ \ai  is 0, or equivalently, such that 

Z {ai E> ai  : i < n }  = 1. (1) 

For  i < n, let U~ be the set of  all p e U with p _< ai. Then, for (p, q) e V, 

r  q) _< a~ E> a ?  i f fp  e U,. and q 6 U~. 

Consequently, (1) holds iff 

V = U  {Ui x(U--U,.)  :i <n }. (2) 

For  i < n, let 0i be the map from U into {0, 1 } that takes each member  of  Ui into 

0 and every member  of  U - Ug into 1, and let 0 be the induced map from U into 
P = {0, 1} n. Then (2) holds iff for all distinct u, v e U, O(u) and O(v) are incompara- 

ble in the poset P, in other words ~ is an injection that maps U onto an antichain 
in P. I f  n < m, then U has more elements than P, and no such map ~ exists. In this 
case, A m therefore satisfies (1,). On the other hand, (1) holds for n = 2 ~ if we take 

the ai's to be the n distinct members of  U, and (ln) therefore fails in this case, and 
of  course also for n > 2 m. This completes the proof. [] 
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